- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bermek, Mehmet (2)
-
Alshannaq, Ammar (1)
-
Bank, Lawrence (1)
-
Gentry Russell (1)
-
Gentry, Russell (1)
-
Scott, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alshannaq, Ammar; Scott, David; Bank, Lawrence; Bermek, Mehmet; Gentry, Russell (, Proceedings, American Society for Composites 2019 Annual Meeting)The production of wind energy worldwide has increased 20-fold since 2001. Composite material wind turbine blades, typically designed for a 20-year fatigue life, are beginning to come out of service in large numbers. In general, these de-commission blades, composed primarily of glass fibers in a thermoset matrix, are demolished and landfilled. There is little motivation for recycling the composite materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not been proven to be economically viable. This research seeks to establish structural re-use applications for wind turbine blades in civil engineering infrastructure, hypothesizing that advanced composite materials may be an attractive alternative to conventional infrastructure materials (e.g. steel, reinforced concrete). This paper presents an analysis and materials characterization of a 47 meter Clipper C96 wind blade. The primarily numerical analysis is accompanied by materials characterization taken from an un-used Clipper blade donated to the project from the Wind Turbine Testing Center (WTTC). The paper presents a brief background on wind turbine blade adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind blade as an electrical transmission tower structure carrying axial compression, along with flapwise and edgewise bending forces. The paper summarizes the composite laminates and cross-section geometries of the blade and establishes the axial and flexural stiffnesses of the blade at multiple sections along the blade length. From a first-order estimation of applied loads for the tower application, the resulting stresses in the composite materials are estimated and compared to the design material properties for the wind blade as originally constructed.more » « less
An official website of the United States government

Full Text Available